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Abstract The Orbital Communication Theory of the chemical bond, in which mole-
cules are treated as information systems transmitting “signals” of electron allocations
to Atomic Orbitals, is extended to cover the local resolution level of electron dis-
tributions and the Configuration-Interaction (CI, multi-determinantal) description of
molecular states. These communication systems generate the information-theoretic
measures of both the absolute and relative multiplicities of chemical bonds, as well as
the bond covalent (communication-noise) and ionic (information-flow) components.
The orbital/local communications via the CI ensembles of the occupied molecular
orbitals in such generalized molecular states are investigated. Illustrative two-orbital
model and its prototype Valence-Bond structures are examined in a more detail.

Keywords Chemical bonds ·Communication systems ·Covalent/ionic components ·
Entropic bond multiplicities · Information theory · Local information propagation ·
Orbital communications

1 Introduction

The Information Theory (IT) [1–8] has been successfully applied to explore the elec-
tron probabilities and patterns of chemical bonds they generate in molecules, e.g.,
[9–21]. In Schrödinger’s quantum mechanics the electronic state is determined by
the system wave-function, the (complex) amplitude of the particle probability distri-
bution, which carries the classical part of the overall information content. Both the
electron density or its shape factor, the probability distribution determined by the
wave-function modulus, and the system current distribution, related to the gradient
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of the wave-function phase, ultimately contribute to the resultant (quantum) informa-
tion content of molecular states. The former reveals the classical information content,
while the latter determines its non-classical complement in the overall information
measure [9,10,20–23].

The non-classical information terms, due to the electron current (or the wave-
function phase), introduce a non-vanishing information source into the associated
entropy/information continuity equation, which expresses a local balance of the resul-
tant information density [10,13]. Since the extremum principles of these generalized
information measures ultimately determine the molecular equilibria implied by the
Schrödinger equation [2,13], this quantum IT treatment of the molecular electronic
structure is thus equivalent to the standard quantum-mechanical description. The verti-
cal information principles [20–23], for the fixed electron density, were shown to closely
parallel the familiar energy and entropy principles of the ordinary thermodynamics.

Elsewhere it has been argued that many classical problems of theoretical chemistry
can be approached afresh using the IT perspective [9–21]. For example, the displace-
ments of the classical information distribution in a molecule, relative to the promolec-
ular reference consisting of its non-bonded constituent atoms, have been investigated
[11–15,17–21,24–26] and the least biased partition of the molecular electron distribu-
tions into subsystem contributions, e.g., densities of bonded atoms, has been examined
[11–13,27–34]. This IT approach has been shown to lead to the “stockholder” Atoms-
in-Molecules (AIM) of Hirshfeld [35]. These optimum density pieces can be derived
from alternative global and local variational principles of IT. They have been also
generalized in a related problem of the AIM partitioning of two-electron densities
[11,32–34].

The spatial localization of specific chemical bonds present another challenging
problem to be tackled by this novel treatment of molecular systems. Another diagnostic
problem of the molecular electronic structure deals with the shell structure and electron
localization in atoms and molecules. The non-additive Fisher information in the Atomic
Orbital (AO) resolution has been recently used as the Contra-Gradience (CG) criterion
for localizing the bonding regions in molecules [11–21,25–38], while the related
information density in the Molecular Orbital (MO) resolution has been shown [11,39]
to determine the vital ingredient of the Electron-Localization Function (ELF) [40–42].

The Communication Theory of the Chemical Bond (CTCB), which uses the entropic
descriptors of the molecular information (communication) channels in the AIM,
orbital and local resolutions of the electron probability distributions, has also been
developed [11–13,43–60]. The same bond descriptors have been used to provide the
information-scattering perspective on the intermediate stages in the electron redistrib-
ution processes [61], including the atom “promotion” via the orbital hybridization [62],
and the communication theory for the excited electron configurations has been devel-
oped [63]. Moreover, the phenomenological description of equilibria in molecular
subsystems has been proposed [11,64–66], which formally resembles that developed
in ordinary thermodynamics [67].

Entropic probes of the electronic structure have already provided attractive tools
for describing the chemical bond phenomenon in information terms. For an explo-
ration of the chemical bond multiplicities in the orbitally-resolved communication
theory [13,58–60,68–71] it is vital to examine how the input information is propa-
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gated between AO, the typical basis functions used to describe the bonding (occupied)
MO subspace. In fact, the molecular system can be regarded as an information system
determined by the communication network of the electronic conditional probabilities,
in which the elementary “units” relevant to the resolution level in question emit and/or
receive the electron-allocation signals [13]. This classical information scattering and
flow processes can be characterized by standard tools of the Shannon’s theory of com-
munication [3,4,7,8,11–13], thus providing a novel class of descriptors of molecular
“connectivities” between AIM.

In particular, the communication noise, measured by the network average condi-
tional entropy (scattered information), reflects the AO indeterminism in a molecule,
and hence also the electron delocalization effect synonymous with the chemical cova-
lency concept. The complementary bond component, chemical iconicity, is similarly
probed by the channel average mutual information (information flow) descriptor, which
reflects the AO deterministic (localization) aspect of the probability propagation in a
molecule. These two IT components complement each other: the more ionic (deter-
ministic) is the molecular communication system, the less covalent (indeterministic) is
its probability propagation in the given AO basis. This reflects a competition between
these two bond components for the available basis functions.

The classical (probability) entropic probes have been applied to interpret the mole-
cular electron distributions in chemical terms. These communication descriptors have
been derived from the classical information channels determined by the conditional
probabilities of the AO events in the stationary (non-degenerate) molecular state, for
which the spatial-phase component, and hence also the associated probability current,
both identically vanish. The truly quantum channel, capable of the communication
interference [72], calls for the information system of the probability-amplitude propa-
gation, with the scattering amplitudes then explicitly depending on phases of the emit-
ting and monitoring complex event-states. Such an amplitude channel, corresponding
to the quantum scattering between complex basis functions in the complex molecular
state, still awaits a more thorough examination [21].

The IT approach introduces into the theory of electronic structure of molecular
systems the novel entropy-representation [10–23], which complements the familiar
energy-representation of the molecular quantum mechanics. Such a dual perspective
parallels that known from the ordinary thermodynamics [67]. It establishes the equiv-
alent energy and entropy/information principles governing the molecular equilibria,
provides a new unifying perspective on molecular electronic structure, extends the
variety of tools for probing chemical processes, and enriches the range of available
descriptors of the bonding patterns in molecules. It increases our understanding of
the classical (intuitive) chemical concepts, e.g., the identity of AIM, bond localiza-
tion, sources and measures of bond-order, its covalent/ionic composition, etc. The
novel, through-bridge mechanism of the (intermediate) orbital interactions in mole-
cules has been identified [73–77], which complements the familiar through-space
(direct) bond contributions. The IT approach also covers changes in the bond pat-
tern effected by chemical reactions [78,79]. The equivalence of the vertical (density-
constrained) energy and entropy/information rules in quantum mechanics parallels
that of the complementary energy and entropy principles of thermodynamics.
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In this work we intend to examine the local communications in molecules and their
bond-multiplicity descriptors. We shall also attempt to generalize the AO formula-
tion of CTCB, called the Orbital Communication Theory (OCT) [12,13,58–60,68–
71], into the multi-determinantal expansions of electronic states encountered in the
Configuration-Interaction (CI) treatment. Previous one-determinantal MO approach,
e.g., within the Hartree-Fock (HF) or Kohn-Sham (KS) Self-Consistent Field (SCF)
MO theories, will be extended to cover the multi-determinantal states of CI theory. The
molecular networks for the electronic information delocalization among basis func-
tions, both classical (probability propagation) and quantum (amplitude scattering),
will then also cover the CI MO-ensembles. This treatment extends the previous Nat-
ural Orbital (NO) analysis [45] of the homonuclear bond in H2 within the Shull model
[80–83]. The information dissipation/flow phenomena will be investigated using both
the local and CI orbital descriptions, and the bond multiplicity/composition descriptors
in prototype Valence-Bond (VB) structures will be reexamined.

Throughout the article the following tensor notation is used: A denotes a scalar
quantity, A stands for the row- or column-vector, and A represents a square or rec-
tangular matrix. The logarithm of the Shannon-type information measure is taken to
an arbitrary but fixed base. In keeping with the custom in works on IT the logarithm
taken to base 2 corresponds to the information measured in bits (binary digits), while
selecting log = ln expresses the amount of information in nats (natural units): 1 nat =
1.44 bits.

2 Communication channels and their information descriptors

We begin with some rudiments on the molecular information networks and the
entropy/information descriptors of a transmission of the electron-assignment “sig-
nals” in molecular communication systems [11–13,46–63]. The basic elements of such
a “device” are shown in Fig. 1. The signal emitted from n “inputs” a = (a1, a2, . . ., an)

of the channel source A is characterized by the probability distribution P(a) =
p = (p1, p2, . . ., pn). It can be received at m “outputs” b = (b1, b2, . . ., bm) of

Input (Source): A       Communication network: P(b|a) Output (Receiver): B

a1 b1

a2 b2

pi → ai    ⎯⎯⎯    P(bj|ai) ≡ P( j|i)  ⎯⎯⎯→ bj  → qj

an bm

Fig. 1 Schematic diagram of the communication system characterized by two probability vectors: P(a) =
{P(ai )} = p = (p1, . . ., pn), of the channel “input” events a = (a1, . . ., an) in the system source A, and
P(b) = {P(b j )} = q = (q1, . . ., qm ), of the “output” events b = (b1, . . ., bm ) in the system receiver
B. The transmission of signals in this communication channel is described by the (n × m)-matrix of the
conditional probabilities P(b|a) = {P(b j |ai ) ≡ P( j |i) = P(i, j)/pi } ≡ P(q|p) of observing different
“outputs” (columns, j = 1, 2, . . ., m), given the specified “inputs” (rows, i = 1, 2, . . ., n). For clarity, only
a single scattering ai → b j is shown in the diagram
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the system receiver B. The transmission of signals in the channel is randomly dis-
turbed thus exhibiting a communication noise. The signal propagation is described
by the conditional probabilities of the “outputs-given-inputs”, P(b|a) = {P(b j |ai ) =
P(ai ∧ b j )/P(ai ) ≡ P( j |i)} ≡ P(q|p); here P(a, b) = {P(ai ∧ b j ) ≡ P(i, j)}
groups probabilities of a joint occurrence of the specified pair of the input and output
events. The relevant normalization conditions of these probabilities read:

∑

j

P(i, j) = pi ,
∑

i

P(i, j) = q j ,

∑

i

∑

j

P(i, j) = 1;
∑

j

P( j |i) = 1, i = 1, 2, . . . (1)

The distribution of the output signal P(b) = q among the detection “events” b is given
by the output probability distribution q = (q1, q2, . . ., qm) = P(a)P(b|a) = pP(q|p).

The Shannon entropy of the “product” distribution P(a, b) can be expressed as the
sum of the average entropy in the marginal (input) probability distribution p,

S(p) = −
∑

i

pi logpi (2)

and the average conditional entropy in q given p (see Fig. 2),

S(q|p) = −
∑

i

∑

j

P(i, j)logP( j |i)], (3)

S ( p|q) I ( p:q) S (q| p)

S ( p) S (q)

Fig. 2 Diagram of the conditional-entropy and mutual-information quantities for two dependent probability
distributions p and q of Fig. 1. Two circles enclose areas representing the entropies S(p) and S(q) of
two separate probability vectors/schemes, while their common (overlap) area corresponds to the mutual
information I (p:q) in these two distributions. The remaining part of each circle represents the corresponding
conditional entropy, S(p|q) or S(q|p), measuring the residual uncertainty about events in one set, when one
has the full knowledge of the occurrence of events in the other set of outcomes. The area enclosed by
the envelope of two circles thus represents the entropy of the “product” (joint) distribution: S(P(a, b)) =
S(p)+ S(q)− I (p : q) = S(p)+ S(q|p) = S(q)+ S(p|q)
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S[P(a,b)] = −
∑

i

∑

j

P(i, j) log P(i, j)

= −
∑

i

∑

j

pi P( j |i) [logpi + logP( j |i)]

= −
⎡

⎣
∑

j

P( j |i)
⎤

⎦
∑

i

pi logpi −
∑

i

pi

⎡

⎣
∑

j

P( j |i)logP( j |i)
⎤

⎦

≡ S(p)+ S(q|p), (4)

The latter represents the extra amount of the information about the occurrence of events
b, given that the events a are known to have occurred. In other words: the amount of
information obtained as a result of simultaneously observing the events a and b of two
discrete probability distributions equals to the amount of information in one set, say
a, supplemented by the extra information provided by the occurrence of events in the
other set b, when a are known to have occurred already.

The common amount of information in two dependent events ai and b j , I (i : j),
measuring the information about ai provided by the occurrence of b j or the information
about b j provided by the occurrence of ai , determines the mutual information in these
two events:

I(i : j) = log
[
P(i, j)/(pi q j )

] = log [P(i | j)/pi ] ≡ log
[
P( j |i)/q j

]

= I( j : i). (5)

It vanishes, when both events are independent, i.e., when the occurrence of one event
does not influence (or condition) the probability of the occurrence of the other event,
and it is negative, when the occurrence of one event makes a non-occurrence of the
other event more likely. It also follows from the preceding equation that

I(i : j) = I(i)− I(i | j) = I( j)− I( j |i) = I(i)+ I( j)− I(i, j) or

I(i, j) = I(i)+ I( j)− I(i : j), (6)

where the self-information of the joint event I(i, j) = −logP(i, j). Thus, the infor-
mation in the joint occurrence of two events ai and b j is the information in the
occurrence of ai plus that in the occurrence of b j minus the mutual information.
Clearly, for independent events, when Pind.(i, j) = pi q j , I ind.(i : j) = 0 and hence
I ind.(i, j) = I(i)+ I( j).

The mutual information of an event with itself defines its self-information: I(i :
i) ≡ I(i) = log[P(i |i)/pi ] = −logpi , since P(i |i) = 1. It vanishes, when pi = 1,
i.e., when there is no uncertainty about the occurrence of ai , so that the occurrence
of this event removes no uncertainty, hence conveys no information. This quantity
provides a measure of the uncertainty about the occurrence of the event itself, i.e.,
the information received when this event actually occurs. The Shannon entropy of Eq.
(2) can be thus interpreted as the mean value of self-informations {I (i) = −logpi }
in individual events: S(p) = ∑

i pi I (i). One similarly defines the average mutual
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information in two probability distributions (see Fig. 2) as the mean value of the
mutual information quantities for individual joint events:

I(p : q) =
∑

i

∑

j

P(i, j)I(i : j) =
∑

i

∑

j

P(i, j)log
[

P(i, j)/Pind.(i, j)
]

= S(p)+ S(q)− S [P(a, b)] = S(p)− S(p|q) = S(q)− S(q|p) ≥ 0, (7)

where equality holds for independent distributions. Indeed, the amount of uncer-
tainty in q can only decrease when p has been known beforehand, S(q) ≥ S(q|p) =
S(q) − I (p : q), with equality being observed only when the two sets of events are
independent, thus giving non-overlapping entropy circles in Fig. 2.

The average mutual information is also an example of the entropy deficiency (cross
entropy, missing information, information distance, directed divergence) of Kullback
and Leibler [5,6]. For example, in the discrete probability scheme identified by events
a = {ai } and their probabilities P(a) = p, this discrimination information in p with
respect to the reference distribution P(a0) = p0 = {p0

i } reads:

�S(p|p0) =
∑

i

pi log(pi/p0
i ) ≡

∑

i

pi Ii ≥ 0. (8)

This quantity provides a measure of the information resemblance between the two com-
pared probability schemes. The more the two distributions differ from one another,
the larger this information distance. For individual events the logarithm of the prob-
ability ratio Ii = log(pi/p0

i ), called the probability surprisal, provides a measure
of the event information in the current distribution relative to that in the reference
distribution. Notice that the equality in the preceding equation takes place only for
the vanishing surprisals in all events, i.e., when the two probability distributions are
identical.

Indeed, the average mutual information of Eq. (7) measures the missing information
between the joint probabilities P(a, b) ≡ π of the dependent events a and b, and the
joint probabilities Pind.(a, b) = π0 = pTq for the independent joint events: I (p : q) =
�S(π |π0). The average mutual information thus reflects a degree of a dependence
between events defining the two probability schemes. A similar information-distance
interpretation can be attributed to the average conditional entropy of Eq. (3): S(p|q) =
S(p)−�S(π |π0).

3 Orbital channels in a single electron configuration

In OCT the orbital channels [3,4,6,11–13] propagate probabilities of electron assign-
ments to basis functions of SCF MO calculations, e.g., Atomic Orbitals (AO) χ =
(χ1, χ2, . . ., χm). The underlying conditional probabilities of the output orbital events,
given the input orbitals, P(χ ′|χ) = {P(χ j |χi ) ≡ P( j |i) ≡ Pi→ j = A( j |i)2 =
(Ai→ j )

2}, or the associated scattering amplitudes A(χ ′|χ) = {A( j |i) = Ai→ j } of
the emitting (input) states a = |χ〉 = {|χi 〉} among the monitoring/receiving (output)
states b = |χ ′〉 = {|χ j 〉}, results from the (bond-projected) superposition principle of
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quantum mechanics [58–60,68–72,84]. The local description, which we shall exam-
ine in the present analysis, uses basis functions {|r〉} of the position representation
identified by the continuous labels of spatial coordinates determining the location
r of an electron. They determine both the input a = {|r〉} and output b = {|r′〉}
of the local molecular channel determined by the relevant conditional probabilities
{P(r′|r) = Pr→r′ = (Ar→r′)2}.

The entropy/information indices of the covalent/ionic components of chemical
bonds represent the complementary descriptors of the average communication noise
and of the amount of information flow, respectively, in the molecular orbital channel.
One observes that the molecular input P(a) ≡ p generates the same distribution in the
output of the molecular channel, q = pP(b|a) = {∑i pi P( j |i) ≡ ∑

i P(i ∧ j) =
p j } = p, thus identifying p as the stationary vector of AO-probabilities in the mole-
cular ground state. This purely molecular communication channel is devoid of any
reference (history) of the chemical bond formation and generates the average noise
index of the IT bond-covalency measured by the conditional-entropy of the system
outputs given inputs: S(P(b)|P(a)) = S(q|p) ≡ S.

The AO channel with the promolecular input signal, P(a0) = p0 = {p0
i }, of to the

system free constituent atoms, refers to the initial stage in the bond-formation process.
It corresponds to the ground-state (fractional) occupations of the AO contributed by the
system constituent atoms, before their mixing into Molecular Orbitals (MO). These
input probabilities give rise to the average information flow index of the system IT
bond-ionicity, given by the mutual-information in the channel promolecular inputs
and molecular outputs [44]:

I(P(a0) : P(b)) = I (p0 : q) =
∑

i

∑

j

P(i, j)log
[

pi P(i, j)/(pi p j p0
i )
]

=
∑

i

∑

j

P(i, j)
[
− logp j + log

(
pi/p0

i

)
+ logP( j |i)

]

= S(q)+�S(p|p0)− S ≡ I0. (9)

This amount of information reflects the fraction of the initial (promolecular) informa-
tion content S(p0) which has not been dissipated as noise in the molecular commu-
nication system. In particlular, for the molecular input, when p0 = p and hence the
vanishing information distance �S(p|p0) = 0,

I(p:q) = S(q)− S ≡ I. (10)

The sum of these two bond components, e.g.,

M(P (a0) ;P(b)) = M
(
p0; q

) = S + I 0 = S (q)+�S
(
p|p0

) ≡ M0, (11)

measures the absolute overall IT bond-multiplicity, of all bonds in the molecular
system under consideration, relative to the promolecular reference. For the molecular
input this quantity preserves the Shannon entropy of the molecular input probabilities:
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M(p ; q) = S(q|p)+ I(p : q) = S (q) ≡ M. (12)

The relative index,

�M = M − M0 = �S
(
p|p0

)
, (13)

reflecting changes due to the chemical bonds alone, is then interaction dependent. It
correctly vanishes in the atomic dissociation limit of separated atoms, when p0 and p
become identical. The entropy deficiency index �S(p|p0), reflecting the information
distance between the molecular electron density, generated by the constituent bonded
atoms, and promolecular density, due to molecularly placed non-bonded constituent
atoms, thus represents the overall IT difference-index of the system chemical bonds.
Another interaction-dependent approach has been proposed within the Natural Orbital
(NO) description of H2 [45].

An exploration of the chemical bond system in electronic states indeed calls for
the AO resolution determined by the basis functions χ = (χ1, χ2, . . ., χm) of typical
SCF LCAO MO calculations. The occupied MO of the familiar Hartree-Fock (HF)
theory define the bonding subspace ϕ0 = χC0{ϕ0

s = φ0
s ξs, s = 1, 2, . . . , N } of the

(singly-occupied) spin-MO (SMO) in the molecular ground-state of N electrons given
by the Slater determinant consisting of N -lowest SMO:

�0(N ) = det
[
ϕ0
]
≡ |ϕ0

1 , ϕ0
2 , . . . , ϕ0

N |. (14)

Here, ϕ0
s (r, σ ) = ϕ0

s (r)ξ0
s (σ ), φ0

s denotes the spatial MO, and ξ0
s stands for one of

two admissible spin states of an electron: ξ0
s ∈ {α(spin-up), β(spin-down)}. One

recalls at this point, that—rigorously speaking—in the Kohn-Sham (KS) theory such
determinant of the method orbitals, which provides quite an adequate description of the
system chemical bonds, e.g., [11–13], defines the hypothetical state of non-interacting
electrons, which generates the same density as the (Coulomb-correlated) ground state
of the real (interacting) system.

In this simplest, one-determinantal orbital approximation one thus takes into
account only a single orbital configuration, e.g., the ground-state �0(N ), the occu-
pied SMO of which give rise to all physical properties of the system under consid-
eration. This configuration is thus uniquely identified by its singly-occupied (physi-
cal) SMO subspace ϕ0 = (ϕ0

1 , ϕ0
2 , . . ., ϕ0

N ), or by the associated spatial MO, φ0 =
(φ0

1 , φ0
2 , . . ., φ0

N ) = χC0, which define the corresponding (idempotent) projectors:

P̂0
ϕ ≡

N∑

s=1

∣∣∣φ0
s

〉〈
φ0

s

∣∣∣=|ϕ0〉〈ϕ0|, (P̂0
ϕ)2= P̂0

ϕ; P̂0
φ≡|φ0〉〈φ0|, (P̂0

φ)2= P̂0
φ . (15)

They generate the configuration Charge-and-Bond-Order (CBO) matrix, i.e., the one-
electron density matrix in the AO representation:
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γ0=
〈
χ

∣∣∣ϕ0
〉 〈

ϕ0
∣∣∣χ
〉
≡ 〈χ | P̂0

ϕ |χ〉=C0C0†={γk,l(0)}, tr γ0≡
∑

i

γi ,i (0)=N ,

(16)

where the rectangular matrix of the LCAO MO expansion coefficients C0 = 〈χ |ϕ0〉 =
〈χ |φ0〉. For the complete AO basis, when |χ〉〈χ | = 1, the CBO matrix is also idem-
potent: (γ0)2 = γ0.

The conditional probabilities of AO communications in this ground-state configu-
ration, via its occupied MO,

P0(χ ′|χ) = {P0( j |i) ≡ Pi→ j (0) = A0( j |i)2 = [Ai→ j (0)]2
= γi, j (0)γ j,i (0)/γi,i (0)}, (17)

then determine the associated joint-probability matrix:

P0(χ ,χ ′) = {P0(i, j) = pi (0)P0( j |i) = γi, j (0)γ j,i (0)/N }, (18)

where the configuration AO probabilities p0 = {pi (0) = γi,i (0)/N }. It can be straight-
forwardly verified that for the complete basis set they satisfy the normalization con-
ditions of Eq. (1), e.g.,

∑

j

P0(i, j) = (1/N )
∑

j

γi, j (0)γ j,i (0) = γi,i (0)/N = pi (0).

The associated communication amplitudes then read:

A0(χ ′|χ) =
{

A0( j |i) = Ai→ j (0) = γi, j (0)/[γi,i (0)]1/2
}

. (19)

They are dependent upon phases of the CBO matrix elements thus being capable of
the communication “interference” [72,85].

4 Local communications in single electron configuration

A deeper understanding of the molecular electronic structure ultimately calls for
the (continuous) fine-grained, local description [86], to complement the (discrete)
coarse-grained AO resolution adopted in OCT. One observes that the above orbital-
communication development can indeed be naturally generalized into such an extreme
resolution level of resolving the electron distributions in molecules, when one exam-
ines the information propagations between infinitesimal volume elements around
r ∈ 
 in the channel input and r′ ∈ 
’ in its output, respectively, where 
 or 
’
denote the whole physical space.

As alredy mentioned in the preceding section, in such an approach one adopts
the local basis set of the precise localization states {|r〉} of an electron, in which the
MO projectors of Eq. (15) give rise to the ordinary (idempotent) one-electron density
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matrix. For example, for the single, say ground-state Slater determinant [Eq. (14)] in
HF or KS theories one finds:

γ 0(r, r′) = 〈r|φ0〉〈φ0|r′〉 = 〈r|P̂0
φ |r′〉 =

∑

s

φ0
s (r)φ0

s (r′)∗,

trγ 0 ≡ ∫ γ 0(r, r)dr = ∫ ρ0(r)dr = N , (20)

∫ γ 0(r, r′)γ 0(r′, r′′)dr′ = ∫〈r|φ0〉〈φ0|r′〉〈r′|φ0〉〈φ0|r′′〉dr′

= 〈r|φ0〉〈φ0|φ0〉〈φ0|r′′〉 = 〈r|φ0〉〈φ0|r′′〉 = γ 0(r, r′′).
(21)

Above we have used the basis set completeness, ∫ dr′|r′〉〈r′| = 1, the MO orthonor-
mality, 〈φ0|φ0〉 = I, ρ0(r) = N p0(r) stands for molecular electron density, while
p0(r) = γ 0(r, r)/N denotes its “shape” (probability) factor.

The local information system involves these strict-localization events in both its
input a = {|r〉} and output b = {|r′〉}. It is determined by the conditional-probability
kernel

P0(r′|r) = Pr→r′(0) = γ 0(r, r′)γ 0(r′, r)/γ 0(r, r) ≡ [Ar→r′(0)]2, (22)

the square of the associated scattering amplitude:

Ar→r′ (0) = γ 0 (r, r′
)
/[ρ0 (r)]1/2. (23)

The corresponding joint-probability distribution thus reads:

P0(r, r′) = p0 (r) P0(r′|r) = γ 0 (r, r′
)
γ 0 (r′, r

)
/N . (24)

One again directly verifies their normalizations using the idempotency property of
the density matrix [Eq. (21)]:

∫ P0(r′, r′)dr′ = (1/N ) ∫ γ 0(r, r′)γ 0(r′, r)dr′ ≡ (1/N ) ∫Ω0(r, r′)dr′

= γ 0(r, r)/N = p0(r), (25)

∫ P0(r′|r)dr′ = [ρ0(r)]−1 ∫ γ 0(r, r′)γ 0(r′, r)dr′ = γ 0(r, r)/ρ0(r) = 1. (26)

Therefore, the molecular density matrix uniquely determines all local communications
between the system infinitesimal volume-elements, via the subspace of the configura-
tion occupied SMO,

{P0(r, r′) = Pr,r′ [γ 0]}, {P0(r′|r) = Pr→r′ [γ 0]} and {A0(r′|r) = Ar→r′ [γ 0]}.
(27)

While probabilities of the local conditional probabilities are independent of the phases
of the “off-diagonal” part of γ 0, for r’ 
= r, their amplitudes are seen to be explicitly
dependent upon phases of the local basis functions.
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5 Entropy/information descriptors of local channels

The overall conditional entropy descriptor [Eq. (3)] of the local channel defined by
the two-point probabilities of Eqs. (22) and (24), is given by the following functional
of the density matrix γ 0 of the molecular ground-state configuration �0(N ) [see Eq.
(21)],

S0(
′|
) = −∫∫ P0(r, r′)logP0(r′|r)dr dr′

= −∫∫ Pr,r′ [γ 0] logPr→r′ [γ 0]drdr′ ≡ S
→
′[γ 0]
= −N−1 ∫∫ γ 0(r, r′)γ 0(r′, r){log[γ 0(r, r′)γ 0(r, r′)] − logγ 0(r, r)}dr′dr

≡ −N−1 ∫∫Ω0(r, r′)logΩ0(r, r′)dr′dr

+N−1 ∫[∫Ω0(r, r′)dr′]logρ0(r)dr

= N−1(S[Ω0]−S[ρ0]). (28)

It thus reflects the difference between the Shannon-entropy

S[Ω0] = −∫∫Ω0 (r, r′
)

logΩ0 (r, r′
)

drdr′ (29)

of the two-point distribution of Eq. (25),

Ω0(r, r′) = Ω0
r, r′ [γ 0] = γ 0(r, r′)γ 0(r′, r) = N P0(r, r′), (30)

and the entropy of the electron density ρ0(r) = N p0(r),

S[ρ0] = −∫ ρ0(r)logρ0(r)dr = −N ∫ p0(r)[logN + logp0(r)]dr

= −N logN + N S[p0]. (31)

The deterministic contribution S0(diag.) of S[Ω0] originates from its “diagonal”
scatterings {r→ r}, when Ω0(r, r) = [ρ0(r)]2 and hence:

Sdiag.[Ω0] = −∫Ω0(r, r) logΩ0(r, r)dr = −∫[ρ0(r)]2log[ρ0(r)]2dr = S[(ρ0)2]
= −2N 2 ∫[p0 (r)]2log[N p0(r)]dr, (32)

i.e., by the diagonal contribution to S
→
′[γ 0]:

S0(diag.) = N−1
{

Sdiag.[Ω0]−S[ρ0]
}
= N−1

{
S[(ρ0)2]−S[ρ0]

}
. (33)

Accordingly, the “scattering” aspect of S[Ω0] is revealed by its off-diagonal part

Sndiag.[Ω0] = S[Ω0]−Sdiag.[Ω0], (34)

or by the associated contribution to S
→
′[γ 0]:

S0(ndiag.) = S0(
′|
)− S0(diag.) = N−1Sndiag.[Ω0]. (35)
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The electron distribution of the system promolecule [11,35] is described by the sum
of the molecularly placed electron densities {ρX

0 (r)} of the free constituent atoms,

ρ0(r) = N p0(r) =
∑

X

ρ0
X(r), (36)

determining the diagonal part ρ0(r) = γ0(r, r) of the promolecular density matrix

γ0(r, r′) =
∑

X

γ 0
X(r, r). (37)

The shape factor p0(r) provides the reference input signal for establishing the corre-
sponding descriptor of the information-flow in the local channel, given by the mutual
information quantity of Eqs. (7) and (9):

I 0(
0 : 
′) = N−1 ∫[∫ P0(r, r′)] log[P0(r′|r)/p0(r)]dr′dr ≡ I 0

→
′[γ 0, γ0]

= −S
→
′[γ 0] − N−1 ∫[∫Ω0(r, r′)dr′]logp0 (r)}dr

≡ −S
→
′[γ 0]+S[p0] +�S[p0|p0], (38)

where the entropy deficiency in the molecular (ground-state) probability p0 relative
to the promolecular distribution p0 [compare Eq. (8)],

�S[p0|p0] = ∫ p0(r) log[p0(r)/p0(r)]dr ≡ ∫ p0(r)I (r)dr, (39)

measures the average value of the local surprisal function I (r), which reflects the
information distance between the two distributions. It generally constitutes a rel-
atively minor contribution, since p0(r) and p0(r) strongly resemble one another,
being distinguished only by relatively minor displacements in the AIM valence shells.
This similarity index exactly disappears for the molecular input signal p0(r),�S[p0

|p0] = 0, thus giving a modified value of the average mutual information of the local
channel [Eq. (10)]:

I 0(
 : 
′) = −S
→
′[γ 0]+S[p0]. (40)

The corresponding overall bond multiplicity indices of Eqs. (11) and (12) then read:

M0(
0; 
′) = S0(
′|
)+ I 0(
0; 
′) = S[p0] +�S[p0|p0],
M0(
;
′) = S0(
′|
)+ I 0(
;
′) = S[p0]. (41)

Therefore, the overall IT multiplicity of the molecular local channel probed by the
molecular signal again recovers the Shannon entropy of the ground-state probability
of electrons [compare Eq. (12)]. The difference index of Eq. (13),

�M = M0(
;
′)− M0(
0; 
′) = �S[p0|p0], (42)

123



J Math Chem (2014) 52:42–71 55

again reflects the overall similarity between the molecular probability distribution p0

and the promolecular reference p0; it correctly disappears in the Separated Atoms
Limit (SAL), where the two distributions become identical.

6 Average orbital communications in CI MO-ensembles

Consider next the familiar (single-reference) Configuration Interaction (CI) expansion
of the molecular ground-state �CI(N ) into nc Slater determinants (electron configu-
rations) Ψ (N ) = {�α(N )}:

�CI(N ) =
∑

α

�α(N )cα ≡ Ψ (N )c,

c = {cα = 〈�α(N )|�CI(N )〉, α = 0, 1, . . . , nc} = 〈Ψ (N )|�CI(N )〉,
〈�α(N )|�β(N )〉 = δα,β or 〈Ψ (N )|Ψ (N )〉 = I, (43)

with α = 0 corresponding to the ground-state (HF or KS) configuration �0(N ), which
usually dominates. The single-configuration approximation of Eq. (14), for |c0| = 1
or p0 = |c0|2 = 1, can be thus regarded as the limiting case of the CI expansion
truncated after this first HF/KS configuration. A typical strong dominance of the CI
wave function by the HF/KS ground-state configuration, pα=0 >> pα>0, implies that
most of the AO communications are indeed carried out via the SMO occupied in the
HF/KS Slater determinant, which generally provides quite satisfactory description of
gross patterns of chemical bonds, e.g., [11–21].

The (orthonormal) configurations Ψ (N ) = {�α(N ) = det[ϕα]} are uniquely deter-
mined by the subspaces of N singly-occupied SMO, ϕα , or by their AO expansions,
ϕα = χCα = {ϕs(α) = χCα

s }, Cα = {Ci,s(α) = 〈χi |ϕs(α)〉}, which give rise to the
associated CBO matrices [see Eq. (16)],

γα = 〈χ |ϕα〉〈ϕα|χ〉 = CαCα† = CυαC†. (44)

Here, the (diagonal) matrix of SMO-occupations in the configuration �α(N ),

υα = {[1 (occupied MO) or 0 (vir tual MO)] δs,s′ = υs(α)δs,s′ }, (45)

and the full LCAO matrix C = (
Cα Cv,α

)
combines expansion coefficients of all m

MO:

ϕ = χC = (ϕα,ϕv,α) = {ϕs}, (46)

occupied, ϕα , and virtual, ϕv,α = χCv,α , obtained in the given basis set χ =
(χ1, χ2, . . ., χm). The diagonal elements of γα represent the configuration effective
AO occupations {ni (α) = γi,i (α)}, while the off-diagonal elements similarly deter-
mine the configuration “bond-orders” between different AO: {ni, j (α) = γi, j (α),

i 
= j}.
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Therefore, each configuration can be associated with the related MO-ensemble
defined by the idempotent SMO-projector P̂α = |ϕα〉〈ϕα|:

d̂α =
∑

s

[υs(α)/N ] |φs〉 〈φs | ≡
∑

s

πs(α)P̂s = (1/N ) |ϕα〉〈ϕα|

= (1/N ) P̂α;
∑

s
πs(α) = 1. (47)

In other words, each determinant �α(N ) implies the associated ensemble of the con-
figuration occupied SMO (single-particle states). It is defined by the density operator
d̂α with equal probabilities of the occupied (physical) SMO in �α(N ), {πs∈α = 1/N},
through which the electron probabilities are scattered (delocalized) between m basis
functions in the underlying AO information system. One further observes that the CBO
(density) matrix γα is proportional to the AO representation of d̂α ,

dα ≡ 〈χ | d̂α |χ〉 = N−1γα. (48)

The combination of configurations in the ground state �CI(N ) [Eq. (43)] simi-
larly determines the CI MO-ensemble corresponding to non-equal SMO probabilities,
{πs =∑

α pαπs(α)},

d̂CI =
m∑

s=1

πs P̂s,
∑

s
πs = 1, (49)

where the conditional probability pα of the configuration �α(N ) in �CI(N ) results
from the superposition principle:

pα ≡ P(�α|�CI) = |cα|2,
∑

α
pα = 1. (50)

This CI density operator of MO subsequently determines its AO representation,

dCI ≡ 〈χ | d̂CI |χ〉 ≡ N−1γCI, (51)

proportional to the CI-average density matrix matrix:

γCI =
∑

α

pαγα ≡ 〈γ〉ens.. (52)

The latter combines the diagonal elements {γi,i (α) = ni (α)}, the average AO occupa-
tions in the configurations involved in the CI ensemble defined by the density operator

D̂CI =
∑

α

|�α〉pα 〈�α| =
∑

α

pαP̂α, (53)

defined by sum of the configuration projections {P̂α} weighted by the associated
probabilities pens. = {pα},

123



J Math Chem (2014) 52:42–71 57

nCI
i = 〈ni 〉ens. =

∑

α

pαni (α) ≡ 〈γi,i 〉ens. =
∑

α

pαγi,i (α), i = 1, 2, . . . , (54)

and the off-diagonal elements reflecting the CI-average “bond-orders” between pairs
of basis functions:

nCI
i, j = 〈ni, j 〉ens. =

∑

α

pαni, j (α) =
∑

α

pαγi, j (α) = 〈γi, j 〉ens., i 
= j. (55)

In principle there are two admissible ways of extending the molecular AO com-
munications into the above CI scenario involving several electronic configurations:
the classical (probability) and quantum (amplitude) averaging in the ground-state CI
SMO-ensemble. Both ultimately reproduce the single-configuration development of
the preceding section as their limiting case, but only the latter is capable of accounting
for the interference phenomena between AO communications in the configurations
used in the CI expansion of the system ground state. Evaluating capabilities of these
two treatments in interpreting the prototype bond patterns should in principle allow
one to select the most suitable approach for chemical applications, to be used for an
understanding of the information content of molecular electronic structure, patterns
of chemical bonds, bond multiplicities and their covalent/ionic composition.

The classical (probability) CI channel thus involves the averaging over the config-
uration AO probabilities themselves:

〈P( j |i)〉ens. ≡
∑

α

pα Pα( j |i) ≡
∑

α

pα Pi→ j (α)

= 〈Ni 〉ens.

∑

α

pαγi, j (α)γ j,i (α),

∑

j

〈P( j |i)〉ens. = 1⇒ 〈Ni 〉ens. = 1/〈ni 〉ens.. (56)

Here the elements of the AO conditional-probability matrix in configuration �α(N )

[see Eq. (17)],

Pα(χ′|χ) = {Pα( j |i) ≡ Pi→ j (α)

= |Ai→ j (α)|2 = |γi, j (α)|2/γi,i (α) ≡ Ni (α)γi, j (α)2},
α = 0, 1, . . . , nc, (57)

determine the configuration a posteriori (classical) amplitudes [see Eq. (19)]:

Aα(χ ′|χ) =
{

Aα( j |i) ≡ Ai→ j (α) ≡ [Pα( j |i)]1/2 = γi, j (α)/[γi,i (α)]1/2

= [Ni (α)]1/2γi, j (α)
}

. (58)

The average probabilities 〈P(χ ′|χ)〉ens. = {〈P( j |i)〉ens. ≡ 〈Pi→ j 〉ens.} gener-
ate the classical (probability) network of the “single-input” summation (parallel) CI
arrangement [85]:
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χ → {pα → Pα(χ ′|χ)} → χ ′ ⇒ χ → 〈P(χ ′|χ)〉ens.→ χ ′,
〈P(χ ′|χ)〉ens. =

∑

α

pαPα(χ ′|χ) ≡ {[〈Ai→ j 〉ens.]2}, (59)

where 〈Ai→ j 〉ens. denotes the a posteriori CI amplitude for the χi → χ j communi-
cation. In this approximation the ensemble-average quantity 〈P( j |i)〉ens. describes
the classical χi → χ j AO probability propagation in the ground-state CI com-
bination of configurations. It misses the amplitude-superposition terms, which
reflect quantum effects of the direct AO communications (bonds) in a molecule.
This direct CI averaging of the configuration AO communications also involves
an effective MO-ensemble defined by the (non-idempotent) density operator of
Eq. (49),

d̂CI =
∑

α

pα d̂α =
∑

s

{
∑

α

pα[υs(α)/N ]
}
|φs〉 〈φs | ≡

∑

s

πs P̂s,
∑

s
πs = 1,

(60)

exhibiting non-equal probabilities of SMO, {πs = υCI
s /N}, which reflect the effective

(fractional) average occupations {υCI
s =

∑
α pαυs(α)} of SMO in the CI-ensemble.

As also indicated in Eq. (59) the square root of each probability 〈P( j |i)〉ens. determines
the corresponding classical CI amplitude 〈A( j |i)〉ens. = [〈P( j |i)〉ens.]1/2.

In the quantum, amplitude-averaging scheme the elements of 〈γ〉ens. are first used
to determine the resultant (a priori) amplitudes {〈Ai→ j 〉av.} of the average commu-
nications between AO in this CI-ensemble of SMO. In full analogy to Eq. (19) this
resultant communication amplitude is shaped by the ensemble average of the corre-
sponding CBO element,

〈A( j |i)〉av. ≡ 〈Ai→ j 〉av. = [〈Ni 〉av.]1/2〈γi, j 〉ens. = [〈Ni 〉av.]1/2
∑

α

pαγi, j (α) or

〈A(χ ′|χ)〉av. =
∑

α

pαAα(χ ′|χ) = {〈A( j |i)〉av. ≡ 〈Ai→ j 〉av.

}
, (61)

with 〈Ni 〉av. standing for the normalization factor of the resultant (average) conditional
probabilities

〈P( j |i)〉av. ≡ |〈Ai→ j 〉av.|2 = 〈Ni 〉av.〈γi, j 〉ens.〈γ j,i 〉ens.

= 〈Ni 〉av.

∑

α

∑

β

pα pβγi, j (α)γ j,i (β)

≡
∑

α

∑

β

pα pβ Pi→ j (α, β), (62)

now containing terms responsible for the interference between configurations. The
normalization constant 〈Ni 〉av. is again obtained from the requirement

∑
j 〈P( j |i)〉av.

= 1:
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〈Ni 〉av. =
⎧
⎨

⎩
∑

α

∑

β

pα pβ

⎡

⎣
∑

j

γi, j (α)γ j,i (β)

⎤

⎦

⎫
⎬

⎭

−1

. (63)

For the complete basis, when
∑

j |χ j 〉〈χ j | = 1, it reads:

〈Ni 〉av. =
{〈

χi

∣∣∣
[∑

s

∣∣∣ϕs

〉
(υCI

s )2
〈
ϕs

∣∣∣
]∣∣∣χi

〉}−1

. (64)

The resultant amplitudes of Eq. (61) define the quantum (amplitude) channel in the
CI ground-state,

|χ〉 → {pα → Aα(χ ′|χ)} → |χ ′〉 ⇒ |χ〉 → 〈A(χ ′|χ)〉av.→ |χ ′〉, (65)

while the average probabilities of Eq. (62), 〈P(χ ′|χ)〉av. = {〈Pi→ j 〉av.}, the squares
of these average amplitudes, generate the associated quantum probability network.
The latter is seen to be determined by the following “double-input” (parallel) system
of the amplitude propagations in the CI MO-ensemble,

|χ〉 → {pα → Aα(χ ′|χ)} → |χ ′〉 ← {Aβ(χ ′|χ ′′)← pβ} ← |χ ′′〉
⇒ |χ〉 → 〈A(χ ′|χ)〉av.→ |χ ′〉 ← 〈A(χ ′|χ ′′)〉av.← |χ ′′〉. (66)

In short notation, for χ = χ ′′, it gives rise to the resultant probability propagation of
Eq. (62):

χ → 〈P(χ ′|χ)〉av.→ χ ′. (67)

Therefore, the average probability 〈P( j |i)〉av. describes the parallel, double-input
scatterings via the average propagation amplitudes:

|χi 〉 → {pα → Ai→ j (α)} → |χ j 〉 ← {A j←i (β)← pβ} ← |χi 〉
⇒ |χi 〉 → 〈Ai→ j 〉av.→|χ j 〉 ← 〈Ai→ j 〉av.← |χi 〉 or χi → 〈Pi→ j 〉av.→χ j .

(68)

The average probability 〈Pi→ j 〉av. thus represents the resultant effect of the double
amplitude propagations |χi 〉 → |χ j 〉 ← |χi 〉 and differs, by communication contribu-
tions reflecting the inter-configuration-interference, from the direct ensemble-average
〈Pi→ j 〉ens. of the configuration conditional probabilities.

To summarize, the classical interpretation of molecular conditional probabili-
ties, defining the ensemble-average AO communications of the CI configurations,
is phase-independent since both the ensemble weights {pα} and the configura-
tion probabilities {Pα(χ ′|χ)} loose memory about the phase content of both the
CI coefficients {cα} and the CBO matrix elements. In order to predict the inter-
ference effects between communication amplitudes of configurations in the resul-
tant AO probabilities, one first combines the relevant elementary amplitudes due to
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each determinant into 〈A(χ ′|χ)〉av. = {〈Ai→ j 〉av.} before determining the CI aver-
age communication probabilities as the squared moduli of the resultant amplitudes,
〈P(χ ′|χ)〉av. = {〈P( j |i)〉av. ≡ |〈Ai→ j 〉ens.|2}. As we have argued above, this prob-
ability channel can be related to the double-input amplitude propagations between AO.

The classical (probability) channel in the CI SMO-ensemble involves only nc

elementary (intra-configuration) probability communications {Pi→ j (α)}, while the
quantum (amplitude) network explores both the intra- and inter-configuration propa-
gations between basis functions, and exhibits an explicit phase dependence. The latter
requires n2

c elementary probability networks {Pi→ j (α, β)} which imply more indeter-
minacy in molecular communications between AO compared to the classical channel.
Therefore, the quantum treatment of the orbital communications is expected to gen-
erate an increased fraction of the “noise” (electron AO delocalization, IT-covalency)
content, and hence a decreased level of the communication “determinicity” (electron
AO localization, IT-ionicity), compared to those characterizing the classical channel.

7 Illustrative example: two-orbital model of chemical bond

As an illustrative case consider the simplest 2-AO model consisting of the two ortho-
normal basis functions, e.g., two symmetrically (Löwdin) orthogonalized (real) AO
contributed by different atoms A and B: χ = χ ′ = (χ1, χ2) ≡ (χA, χB). They
give rise to two independent (spatial) MO combinations φ = (φb, φa), which can be
expressed in terms of the complementary AO probabilities P and Q = 1− P ,

bonding, φb = χACA,b + χBCB,b ≡ χA(P)1/2 + χB(Q)1/2 ≡ χCb, and

anti-bonding, φ(1)
a = χAC (1)

A,a + χBC (1)
B,a ≡ −χA (Q)1/2 + χB (P)1/2 ≡ χC(1)

a ,

(69)

or in the compact joint notation:

φ(1) = χ [Cb C(1)
a ] ≡ χC(1), C(1) =

[√
P −√Q√
Q
√

P

]
, (70)

The magnitudes of LCAO MO coefficients are thus shaped by the conditional proba-
bilities,

P = P(χA|φb) = (CA,b)
2 = P(χB |φ(1)

a ) = [C (1)
B,a]2, and

Q = P(χB|φb) = (CB,b)
2 = P(χA|φ(1)

a ) = [C (1)
A,a]2 = 1− P. (71)

It can be straightforwardly verified that these two MO combinations indeed satisfy the
MO-orthonormality relations:

〈φ(1)|φ(1)〉 = C(1)T〈χ |χ〉C(1) = C(1)TC(1) = I, (72)

where we have used the AO orthonormality: 〈χ |χ〉 = I. We further assume that both
atoms of the system “promolecule”, consisting of the molecularly placed free atoms,
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p( p°) P(b|a) q = p

P(½) χA P χA             P        S(P) = −Plog2P − Qlog2Q ≡ H(P)
Q I°(P) = 1− H (P)
P ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Q(½) χB Q χB              Q       N° (P) = S(P) + I°(P) = 1

Fig. 3 Communication channel of the 2-AO model of the chemical bond and its entropy/information
descriptors (in bits)

contribute a single electron each to the molecular bond system of N = 2 electrons:
p0 = (1/2, 1/2).

Let us first examine the single-configuration description of this model chemical
bond, e.g., in the HF/KS ground-state, when both (spin-paired) electrons occupy the
bonding MO φb. The relevant CBO matrix γ reads:

γ = 2CbC†
b = 2

[
P
√

P Q√
Q P Q

]
. (73)

It generates the following conditional probabilities of AO communications,

P(b|a) = P(χ ′|χ) = {P( j |i) =
[

P Q
P Q

]
, (74)

which determine the classical (probability) channel for AO communications χ → χ ′
(Fig. 3).

In this non-symmetrical binary channel one adopts the molecular input signal,
p = (P, Q), to extract the bond IT-covalency measuring the channel average com-
munication noise [9–11]. Adopting the promolecular input signal p0 = (1/2, 1/2),
reflecting that each of the two basis functions has contributed a single electron each to
form the chemical bond, allows one to determine the associated index of IT-ionicity
relative to this initial, reference signal, which then measures the information capacity
of this model AO channel.

The bond IT-covalency (conditional entropy S(b|a) = S(P) is thus determined by
Binary Entropy Function (BEF) of the two complementary conditional probabilities
of AO in MO [Eq. (71)], H(P) = −Plog2 P − (1− P)log2(1− P) (see Fig. 4),

S(P) = H(P) = −Plog2 P − Qlog2 Q. (75)

It exhibits the maximum value H (1/2) = 1 bit for the symmetric bond P = Q =
1/2, e.g., the two prototype covalent bonds in chemistry: the σ bond in H2 or the
π -bond in ethylene. It vanishes for the lone-pair configurations, when P = (0 or 1),
H(0) = H(1) = 0, marking the alternative ion-pair configurations A+B− and A−B+,
respectively, relative to the initial AO occupations n0 = (1, 1) in the assumed covalent
promolecular reference, in which both atoms contribute a single electron each to form
the chemical bond A–B.

The complementary mutual-information descriptor of the bond IT-ionicity (infor-
mation flow) [Eq. (9)], I0(P) = 1 − H(P), which determines the channel mutual
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Fig. 4 Conservation of the overall entropic bond multiplicity M0(P) = 1 bit in the 2-AO model of the
chemical bond, combining the conditional-entropy (average noise, bond IT covalency) S(P) = H(P) and
the mutual-information (information capacity, bond IT ionicity) I0(P) = 1−H(P). In MO theory the direct
bond-order of Wiberg [87] is represented by the (broken-line) parabola MA,B(P) = 4P(1− P) ≡ 4P Q

information relative to the promolecular input, is thus correctly diagnosed to reach
the highest value for the two electron-transfer pairs: I0(0) = I0(1) = 1 bit, and pre-
dicted to identically vanish for the purely-covalent, symmetric bond, I0(1/2) = 0. As
explicitly shown in Fig. 4, these two components of the chemical bond multiplicity
compete with one another, yielding the conserved overall IT bond index [Eq. (11)]:
M0(P) = S(P) + I0(P) = 1 bit, which in OCT marks the full single bond, in the
whole range of the admissible bond polarizations P ∈ [0, 1].

This simple model thus properly accounts for the competition between the bond
covalency and ionicity, while preserving the single bond-order measure reflected by
the conserved single IT multiplicity of the chemical bond. Similar effects transpire
from the quadratic bond indices formulated in the MO theory [87–97]. For example,
the plot of Wiberg bond-order [87] for this model (see Fig. 4) is given by the parabola
MA,B(P) = [γA,B(P)]2 = 4P Q = 4P(1 − P), which closely resembles the IT-
covalent plot S(P) = H(P) in the same figure. It should be stressed, however, that this
“complementary” indexing scheme in OCT has been designed primarily to describe the
bonding patterns of the equilibrium molecular geometries. It fails to account for a decay
in the overall bond multiplicity accompanying bond elongation. For the improved CI-
type descriptors, which remedy this shortcoming, see Ref. [45].

In this (minimum basis) 2-AO description there are three singlet configurations
(of the spin-paired electrons), Ψ = (�b, �n, �a), including the HF/KS ground-state
(bonding) configuration

�b = |φbα, φbβ|, (76)

the singly-excited (S) non-bonding configuration

�(1)
n = 2−1/2{|φbα, φ(1)

a β| + |φbβ, φ(1)
a α|}, (77)

and the doubly-excited (D) anti-bonding configuration

�(1)
a = |φ(1)

a α, φ(1)
a β|, (78)
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into which the CI ground state is expanded in the familiar CI-[Singles and Doubles]
(CISD) approximation:

�CI (2) ∼= cb�b (2)+ cn�n (2)+ ca�a (2) ≡ �CISD (2) . (79)

The classical channel, from the probability averaging treatment, is now charac-
terized by the ensemble average of communications {χi → χ j } resulting from the
internal communications {Pi→ j (α)} between the specified pair of AO in each config-
uration:

[χi − pb Pi→ j (b)→ χ j ] + [χi − pn Pi→ j (n)→ χ j ] + [χi − pa Pi→ j (a)→ χ j ]
≡ χi − 〈Pi→ j 〉ens.→ χ j , (80)

where the brackets [ ] enclose the separate internal AO propagation in each configura-
tion �α , with the weight being determined by the associated configuration probability
pα .

The corresponding quantum channel, from the amplitude averaging scheme, com-
bines the following elementary amplitudes,

[|χi 〉 − {pb Ai→ j (b)} → |χ j 〉] + [|χi 〉 − {pn Ai→ j (n)} → |χ j 〉]
+[|χi 〉 − {pa Ai→ j (a)} → |χ j 〉] ≡ |χi 〉 − 〈Ai→ j 〉av.→ |χ j 〉. (81)

They generate nine modes {Pi→ j (α, β)} of the probability scattering: three diagonal
(intra-configuration) modes {Pi→ j (α, α) ≡ Pi→ j (α)} and six off-diagonal (inter-
configuration) ones {Pi→ j (α, β), α 
= β}.

Therefore, instead of three elementary probability propagations {Pi→ j (α)} in the
classical CI channel, one identifies nine probability modes {Pi→ j (α, β)} in the quan-
tum CI system. While the classical communications between AO are purely intra-
configuration in character, the non-classical (quantum) network exibits both the intra-
and inter-configuration communications, with the latter being responsible for the
quantum-mechanical interference of configuration communications.

We therefore conclude that more complex, quantum communications in molecules
are predicted to be capable of a more efficient dissipation of the input AO information
into the electron delocalization (“noise”, orbital IT covalency), compared to the simpler
classical network. One observes, however, that the interference effects, characteriz-
ing only the non-classical (amplitude) channels, can in some cases help to preserve
the communication localization (“order”, orbital IT ionicity), i.e., “determinicity” in
molecular communications, by increasing or decreasing the AO communication prob-
abilities relative to the associated classical network.

8 Orbital coupling and bond multiplicities in prototype VB states

In the 2-AO model the set of four elementary AO products, two ionic, [A−B+] =
χA(1)χA(2) and [A+B−] = χB(1)χB(2), and two covalent, [A–B] = χA(1)χB(2) and

123



64 J Math Chem (2014) 52:42–71

[B–A] = χB(1)χA(2), span the complete two-electron Hilbert space of the familiar
VB approach [98]. Through the two spatial configurations of the CID expansion,

�b(2) = P
[
A−B+

]+ Q
[
A+B−

]+√2P Q�cov. (2) ,

�a(2) = Q
[
A−B+

]+ P
[
A+B−

]−√2P Q�cov. (2) , (82)

where the covalent (atomic) structure of Heitler and London represents the normal-
ized difference of both configurations, yielding the symmetrized combination of two
covalent products,

�cov.(2) ≡ 2−1/2[�b(2)−�a(2)] = 2−1/2 {[A− B] + [B− A]}, (83)

it is capable of representing both electronic (singlet) states of this two-electron system,
e.g., the ground state,

�CID(2) ≡ �+(2) = cb�b(2)+ ca�a(2), |cb|2 + |ca |2 = 1, (84)

and the excited, anti-bonding combination,

�exc.(2) ≡ �−(2) = −ca�b(2)+ cb�a(2). (85)

They express all prototype chemical states of this two-electron system in VB theory.
For example, for the homomonuclear (symmetric) bond, P = Q = 1/2, one defines
the covalent structure �cov.(2) given by the difference of MO configurations [Eq. (83)]
and the ionic structure � ion.(2) representing the normalized sum of these electron
configurations giving the symmetrized combination of two ionic products:

� ion.(2) ≡ 2−1/2[�b(2)+�a(2)] = 2−1/2{[A−B+] + [A+B−]}, (86)

These two reference chemical states correspond to equal configuration probabilities:

pion. = pcov. = (1/2, 1/2) ≡ (1/2)1, (87)

thus giving rise to identical CID probability and amplitude MO-ensembles.
Therefore, both the classical (probability) and quantum (amplitude) averaging

schemes do not reveal the basic chemical difference between these two prototype
VB states, which is embodied in the phases of MO configurations in these two com-
binations. In particular, the classical averaging of the configuration conditional prob-
abilities gives:

〈P(χ ′|χ)〉ens. = Pcov.(χ ′|χ) = Pion.(χ ′|χ) = 1/2[Pb(χ ′|χ)+ Pa(χ ′|χ)] = (1/2)1.

(88)
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Definitions of Eqs. (83) and (86) also imply identical ensemble-average bond-orders
between AO in both structures,

〈γ〉ens. =
∑

α=b,a

pαγα = 1/2(γb + γa) =
[

1 0
0 1

]
≡ I, (89)

and hence the diagonal average amplitudes of AO communications,

〈A(χ ′|χ)〉av. = Acov.(χ ′|χ) = Aion.(χ ′|χ) = 2−1/2[Ab(χ ′|χ)+ Aa(χ ′|χ)] = I.

(90)

They generate the deterministic (diagonal) average CID channel:

〈P(χ ′|χ)〉av. = 〈Pcov.(χ ′|χ)〉av. = 〈Pion.(χ ′|χ)〉av. = {[〈A(χ j |χi )〉av.]2} = I.

(91)

One recalls that the two prototype VB states, �cov.(2) and � ion.(2), also represent
the reference atomic and ionic dissociation limits, respectively, with the former attribut-
ing single electrons to different atoms and the latter locating both electrons on a single
AO. The ionic structure indeed represents the equal participation of two admissible
ion-pairs, relative to the assumed (atomic) promolecular reference. The fully coupled,
classical communication system 〈P(χ ′|χ)〉ens. = (1/2)1 represents in OCT the purely
covalent communication system, 〈S(χ ′|χ)〉ens. = 1 bit and 〈I0(χ : χ ′)〉ens. = 0, of
the complete dissipation of the initial (input) information into the communication
“noise” [11–13]. It thus reflects the maximum IT-covalency and hence the minimum
IT-ionicity in this model chemical bond (see Fig. 4). It should be also observed that for
the strictly deterministic average amplitude channel, 〈P(χ ′|χ)〉av. = I, the IT-covalent
bond component indeed vanishes, 〈S(χ ′|χ)〉av. = 0, with the complementary IT-ionic
index of the channel information capacity relative to the assumed atomic promolecule,
〈I0(χ : χ ′)〉av. = 1 bit, indeed marking a single purely ionic chemical bond [11–13].

One could intuitively expect from the definition of Eq. (86) that the ionic VB-
structure represents only the intra-atomic orbital communications (inter-atomically
decoupled), in which the amplitude scatterings between different atoms, |χA〉 → |χB〉
and |χB〉 → |χA〉 , identically vanish with only the intra-AO, fully deterministic
communications |χA〉 → |χA〉 and |χB〉 → |χB〉 remaining. This conjucture is seen to
be supported by the average bond-orders in this ionic state, which also reflect its average
communication amplitudes of Eq. (90). The equal mixture of the CBO matrices for
two configurations involved in � ion.(2) thus gives the expected average amplitudes,
which correctly describe the average AO populations {〈ni 〉ens. = 1} of electrons
in this orbitally decoupled state, equal to those in the assumed atomic promolecule.
They generate the purely deterministic average communications in this ionic reference
state:

〈P(χ ′|χ)〉av. = I ≡ Pion.(χ ′|χ). (92)
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Fig. 5 The diagonal (upper
channel) and off-diagonal (lower
channel) communications in two
prototype VB structures

χA 1 χA
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        1    
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  1   χB

This intuitively correct prediction from the quantum (amplitude) CID MO-ensemble
is in contrast to that resulting from the classical (probability) averaging scheme, which
implies the full spectrum of orbital communications expected in the fully delocalized
state �cov.(2),

〈P(χ ′|χ)〉ens. = (1/2)1 ≡ Pcov.(χ ′|χ), (93)

containing the equal mixture of both the intra- and inter-AO communications in
Fig. 3.

One would also expect that the prototype covalent structure of Eq. (83) should
indeed equally explore both the off-diagonal (delocalized) communications |χA〉 →
|χB〉 and |χB〉 → |χA〉 and the localized |χA〉 → |χA〉 and |χB〉 → |χB〉 propagations
of � ion.(2), since then the IT-covalency, reflected by the molecular conditional entropy
S(χ ′|χ), reaches its maximum value of 1 bit of information, while the channel IT-
ionicity, measured by the mutual information relative to the promolecular reference,
I 0(χ : χ ′), identically vanishes. This expectation is indeed realized only in the clas-
sical probability averaging of Eq. (88).

Therefore, neither of the two averaging schemes in the CID MO-ensemble gives the
intuitively expected predictions for both these complementary apects of the chemical
bond in the 2-AO model. This analysis seems to confirm the “classical” character of the
bond-ionic IT multiplicity, being correctly represented by the probability-averaging
over configurations. The complementary bond-covalency appears to constitute the
“quantum” aspect of the bonding pattern in a molecule, the overall IT multiplicity of
which requires the amplitude-averaging over configurations.

In the alternative CID perspective [45] on the information origins of the two bond
components and on the overall entropic measure of the chemical bond-order one
separates the deterministic (“additive”, localized) diagonal communications |χA〉 →
|χA〉 and |χB〉 → |χB〉 , from the cross (“non-additive”, delocalized) probability
propagations |χA〉 → |χB〉 and |χB〉 → |χA〉 between AO (Fig. 5). The former are then
linked to the bond ionicity effects, while the latter are ascribed to the chemical bond
covalency. In this approach the overall conditional entropy generates the interaction-
dependent IT index of the chemical bond overall multiplicity, which correctly vanishes
in the SAL and was shown to compare favourably with the Wiberg index of quantum
chemistry (Fig. 4).
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As we have already observed above, the predictions of AO communications in both
VB structures are the same in the given averaging scheme of the CID MO-ensemble,
thus failing to distinguish the fundamental chemical difference in these two proto-
type bonding situations. In order to remedy this shortcoming one has to recognize
the configuration phases in Eqs. (83) and (86). For the ionic structure this proposi-
tion again leads to the average amplitudes generated by the diagonal bond orders of
Eq. (89),

〈γion.〉ens. = 1/2(γb + γa) = I, (94)

while for the covalent structure one then obtains the average CBO-difference matrix:

〈γcov.〉ens. = 1/2(γb − γa) =
[

0 1
1 0

]
≡ 1− I. (95)

These average matrix elements (communication amplitudes) thus correctly ascribe
the deterministic diagonal (intra-AO) communications |χA〉 → |χA〉 and |χB〉 → |χB〉
to � ion.(2), while the off-diagonal (inter-AO) probability propagations |χA〉 → |χB〉
and |χB〉 → |χA〉 are identified as originating from �cov.(2). This is schematically
illustrated in Fig. 5. A similar partitioning of these elementary AO communications
in the H2 information system has been also conjectured elsewhere [99].

In this novel perspective the AO communications are thus classified as the intra-
AO (ionic) or inter-AO (covalent). This conforms to the accepted chemical intuition,
in which the localized AO propagations of � ion.(2) are exclusively associated with
the bond ionicity, and the delocalized AO scatterings are solely responsible for the
electron sharing (covalent) effects of the chemical bond. The same classification then
applies to the conditional entropy contributions to the IT bond order: the AO diago-
nal terms H (diag.) ≡ Vion. are then ionic in character, the off-diagonal contribution
H (ndiag.)≡ Vcov. generates a modified measure of the bond covalency, and their sum,
V = Vcov.+Vion. = S, i.e., the overall conditional entropy of the average AO channel
in the CI MO-ensemble [Eq. (93)], now stands for the overall entropic measure of the
bond multiplicity.

For example, in the HF/KS 2-AO communication system (Fig. 3) probed by the
molecular input probabilities p = (P, Q) one then predicts:

Vion .(P) = −P2logP − Q2logQ, Vcov. (P) = −P Q
[
logP + logQ

]
. (96)

These two entropic components give the associated global measure of the modified
bond multiplicity index, equal to BEF H(P),

V (P) = Vcov. (P)+ Vion. (P) = (P + Q) [−PlogP − QlogQ] = H(P) . (97)

This new index compares favourably with the Wiberg bond order in Fig. 4 and
is interaction-dependent. It vanishes in the heteronuclear (ionic) dissociation limit,
�CID(2) = � ion.(2), at large separation between atoms, RAB → ∞, when (P = 1
and Q = 0) or (P = 0 and Q = 1). This result Vion.(∞) = 0 represents the vanishing
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noise descriptor of the first deterministic channel in Fig. 5. It should be also observed
that in the symmetric case of H2 at the equilibrium separation between nuclei, when
P = Q = 1/2,

Vion. (1/2) = Vcov. (1/2) = 1/2 and V (1/2) = 1. (98)

For the spin-unrestricted (UHF/UKS) orbitals in this homonuclear (atomic) dissoci-
ation limit RAB → ∞, both MO represent the corresponding AO, i.e., again (P = 1
and Q = 0) or (P = 0 and Q = 1) and �CID(2) = �cov.(2). Therefore, one again pre-
dicts Vcov.(∞) = 0, the vanishing overall noise descriptor of the second deterministic
channel in Fig. 5.

In a general case of the constituent atoms contributing several AO to the molecular
bond system one adopts the usual atomic resolution [91], in which the sum of the
intra-atomic diagonal-scattering contributions again reflects the atomic ionicity, the
atom off-diagonal conditional probabilities between different AO generate the atomic
IT covalency index, reflecting the AIM promotion in the presence of the remaining
atoms, and the inter-atomic information propagation terms reflect the true chemical
bonding between different atoms.

9 Conclusion

It has been amply demonstrated elsewhere that IT provides an attractive, novel perspec-
tive on the molecular equilibria, multiplicity, composition and localization of chemical
bonds in molecular systems, and their information origins. We have presented in this
analysis some new developments in CTCB covering the local information systems
and the CI MO-ensemble generalization of the single-configuration OCT.

All these approaches introduce the communication perspective on several classi-
cal issues in the theory of bond multiplicities and their covalent/ionic composition.
The inter-atomic conditional probabilities in HF or KS theories, generated from the
bond-projected superposition principle of quantum mechanics, are proportional to the
quadratic (Wiberg-type) bond indices formulated in the SCF MO description. There-
fore, the strong inter-orbital communications correspond to strong Wiberg bond-order
contributions. The OCT treatment of the localized (diatomic) chemical interactions
in polyatomics has also been developed [11–13,69]. This approach reproduces the
Wiberg bond multiplicity in diatomic molecules and allows one to resolve the overall
IT bond-order of the localized bond into the associated IT covalent/ionic components.
In typical polyatomic molecules these localized-bond multiplicities were also shown
to closely approximate the quadratic Wiberg index of quantum chemistry, at the same
time providing its IT-covalent/ionic resolution [69].

In this work OCT has been extended to cover the multi-determinantal CI-type wave
functions. The effective MO-ensemble approach, which recognizes the phases of the
CI configurations, has been advocated for extracting chemical interpretation from
the molecular AO information channels. In the CID treatment of the 2-AO model
the “diagonal” (intra-orbital) communications have been associated with the IT bond
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ionicity, while the complementary covalent component has been attributed to the “off-
diagonal” (inter-orbital) probability scatterings.

It should be emphasized that the two CI MO-ensemble approaches, the classical
(probability) and quantum (amplitude) averaging schemes, can be also applied to
weight the local channels in each configuration used in the underlying CI expansion
of the system ground state. The classical local probabilities are then calculated as the
ensemble average probabilities in each configuration [see Eq. (22)]:

〈Pr→r′ 〉ens. =
∑

α

pα Pr→r′(α), (99)

while the associated quantum probabilities 〈Pr→r′ 〉av. = [〈Ar→r′ 〉av.]2 are generated
by the squares of the resultant average amplitudes [see Eq. (23)]:

〈Ar→r′ 〉av. =
∑

α

pα Ar→r′(α), (100a)

preferably recognizing the configuration phases in the ground state:

〈Ar→r′ 〉av. =
∑

α

sign(cα)pα Ar→r′(α). (100b)

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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25. R.F. Nalewajski, E. Świtka, Phys. Chem. Chem. Phys. 4, 4952 (2002)
26. R.F. Nalewajski, E. Broniatowska, J. Phys. Chem. A. 107, 6270 (2003)
27. R.F. Nalewajski, R.G. Parr, Proc. Natl. Acad. Sci. USA 97, 8879 (2000)
28. R.F. Nalewajski, R.G. Parr, J. Phys. Chem. A 105, 7391 (2001)
29. R.F. Nalewajski, R. Loska, Theor. Chem. Acc. 105, 374 (2001)
30. R.F. Nalewajski, Chem. Phys. Lett. 372, 28 (2003)
31. R.G. Parr, P.W. Ayers, R.F. Nalewajski, J. Phys. Chem. A 109, 3957 (2005)
32. R.F. Nalewajski, Phys. Chem. Chem. Phys. 4, 1710 (2002)
33. R.F. Nalewajski, Adv. Quantum Chem. 43, 119 (2003)
34. R.F. Nalewajski, E. Broniatowska, Theor. Chem. Acc. 117, 7 (2007)
35. F.L. Hirshfeld, Theor. Chim. Acta (Berl.) 44, 129 (1977)
36. R.F. Nalewajski, Int. J. Quantum Chem. 108, 2230 (2008)
37. R.F. Nalewajski, J. Math. Chem. 47, 667 (2010)
38. R.F. Nalewajski, P. de Silva, J. Mrozek, J. Mol. Struct: THEOCHEM 954, 57 (2010)
39. R.F. Nalewajski, A.M. Köster, S. Escalante, J. Phys. Chem. A 109, 10038 (2005)
40. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)
41. B. Silvi, A. Savin, Nature 371, 683 (1994)
42. A. Savin, R. Nesper, S. Wengert, T.F. Fässler, Angew. Chem. Int. Ed. Engl. 36, 1808 (1997)
43. R.F. Nalewajski, J. Phys. Chem. A 104, 11940 (2000)
44. R.F. Nalewajski, J. Math. Chem. 49, 2308 (2011)
45. R.F. Nalewajski, J. Math. Chem. 51, 7 (2013)
46. R.F. Nalewajski, K. Jug, in Reviews of Modern Quantum Chemistry: A Celebration of the Contributions

of Robert G. Parr, vol. I, ed. by K.D. Sen (World Scientific, Singapore, 2002), p. 148
47. R.F. Nalewajski, Struct. Chem. 15, 391 (2004)
48. R.F. Nalewajski, Mol. Phys. 102, 531, 547 (2004)
49. R.F. Nalewajski, Mol. Phys. 103, 451 (2005)
50. R.F. Nalewajski, Mol. Phys. 104, 1977, 2533 (2006)
51. R.F. Nalewajski, Theor. Chem. Acc. 114, 4 (2005)
52. R.F. Nalewajski, J. Math. Chem. 38, 43 (2005)
53. R.F. Nalewajski, J. Math. Chem. 43, 265 (2008)
54. R.F. Nalewajski, J. Math. Chem. 45, 607 (2009)
55. R.F. Nalewajski, J. Math. Chem. 45, 709 (2009)
56. R.F. Nalewajski, J. Math. Chem. 45, 776 (2009)
57. R.F. Nalewajski, J. Math. Chem. 45, 1041 (2009)
58. R.F. Nalewajski, Int. J. Quantum Chem. 109, 425, 2495 (2009)
59. R.F. Nalewajski, J. Math. Chem. 47, 709 (2010)
60. R.F. Nalewajski, J. Math. Chem. 49, 592 (2011)
61. R.F. Nalewajski, J. Math. Chem. 43, 780 (2008)
62. R.F. Nalewajski, J. Phys. Chem. A 111, 4855 (2007)
63. R.F. Nalewajski, Mol. Phys. 104, 3339 (2006)
64. R.F. Nalewajski, J. Phys. Chem A 107, 3792 (2003)
65. R.F. Nalewajski, Mol. Phys. 104, 255 (2006)
66. R.F. Nalewajski, Ann. Phys. (Leipzig) 13, 201 (2004)
67. H.B. Callen, Thermodynamics: An Introduction to the Physical Theories of the Equilibrium Thermo-

statics and Irreversible Thermodynamics (Wiley, New York, 1960)
68. R.F. Nalewajski, Adv. Quantum Chem. 56, 217 (2009)

123



J Math Chem (2014) 52:42–71 71

69. R.F. Nalewajski, D. Szczepanik, J. Mrozek, Adv. Quantum Chem. 61, 1 (2011)
70. R.F. Nalewajski, D. Szczepanik, J. Mrozek, J. Math. Chem. 50, 1437 (2012)
71. R.F. Nalewajski, J. Math. Chem. 47, 692, 808 (2010)
72. R.F. Nalewajski, J. Math. Chem. 49, 806 (2011)
73. R.F. Nalewajski, J. Math. Chem. 49, 371, 546 (2011)
74. R.F. Nalewajski, P. Gurdek, J. Math. Chem. 49, 1226 (2011)
75. R.F. Nalewajski, Int. J. Quantum Chem. 112, 2355 (2012)
76. R.F. Nalewajski, P. Gurdek, Struct. Chem. 23, 1383 (2012)
77. R.F. Nalewajski, Int. J. Quantum Chem. 113, 766 (2013)
78. S. López-Rosa, Information-Theoretic Measures of Atomic and Molecular Systems, PhD Thesis, Uni-

versity of Granada 2010
79. S. López-Rosa, R.O. Esquivel, J.C. Angulo, J. Antolín, J.S. Dehesa, N. Flores- Gallegos, J. Chem.

Theory Comput. 6, 145 (2010)
80. H. Shull, J. Am. Chem. Soc. 82, 1287 (1960)
81. H. Shull, J. Am. Chem. Soc. 86, 1469 (1964)
82. H. Shull, J. Phys. Chem. 66, 2320 (1962)
83. S. Hagstrom, H. Shull, Rev. Mod. Phys. 35, 624 (1963)
84. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Clarendon, Oxford, 1958)
85. R.F. Nalewajski, On Phases and Interference of Local Communications in Molecules, J. Math. Chem.

(in press)
86. R.F. Nalewajski, J. Math. Chem. 44, 414 (2008)
87. K.A. Wiberg, Tetrahedron 24, 1083 (1968)
88. M.S. Gopinathan, K. Jug, Theor. Chim. Acta (Berl.) 63, 497, 511 (1983)
89. K. Jug, M.S. Gopinathan, in Theoretical Models of Chemical Bonding, Vol. II, ed. by Z.B. Maksić,
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